AUXIN RESPONSE FACTOR3 Regulates Compound Leaf Patterning by Directly Repressing PALMATE-LIKE PENTAFOLIATA1 Expression in Medicago truncatula
نویسندگان
چکیده
Diverse leaf forms can be seen in nature. In Medicago truncatula, PALM1 encoding a Cys(2)His(2) transcription factor is a key regulator of compound leaf patterning. PALM1 negatively regulates expression of SGL1, a key regulator of lateral leaflet initiation. However, how PALM1 itself is regulated is not yet known. To answer this question, we used promoter sequence analysis, yeast one-hybrid tests, quantitative transcription activity assays, ChIP-PCR analysis, and phenotypic analyses of overexpression lines and mutant plants. The results show that M. truncatula AUXIN RESPONSE FACTOR3 (MtARF3) functions as a direct transcriptional repressor of PALM1. MtARF3 physically binds to the PALM1 promoter sequence in yeast cells. MtARF3 selectively interacts with specific auxin response elements (AuxREs) in the PALM1 promoter to repress reporter gene expression in tobacco leaves and binds to specific sequences in the PALM1 promoter in vivo. Upregulation of MtARF3 or removal of both PHANTASTICA (PHAN) and ARGONAUTE7 (AGO7) pathways resulted in compound leaves with five narrow leaflets arranged in a palmate-like configuration. These results support that MtARF3, in addition as an adaxial-abaxial polarity regulator, functions to restrict spatiotemporal expression of PALM1, linking auxin signaling to compound leaf patterning in the legume plant M. truncatula.
منابع مشابه
Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development.
Compound leaf development requires highly regulated cell proliferation, differentiation, and expansion patterns. We identified loss-of-function alleles at the SMOOTH LEAF MARGIN1 (SLM1) locus in Medicago truncatula, a model legume species with trifoliate adult leaves. SLM1 encodes an auxin efflux carrier protein and is the ortholog of Arabidopsis thaliana PIN-FORMED1 (PIN1). Auxin distribution ...
متن کاملRegulation of Compound Leaf Development by PHANTASTICA in Medicago truncatula1[C][W][OPEN]
Plant leaves, simple or compound, initiate as peg-like structures from the peripheral zone of the shoot apical meristem, which requires class I KNOTTED-LIKE HOMEOBOXI (KNOXI) transcription factors to maintain its activity. The MYB domain protein encoded by the ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) gene, together with other factors, excludes KNOXI gene expression from incipient leaf...
متن کاملRegulation of compound leaf development by PHANTASTICA in Medicago truncatula.
Plant leaves, simple or compound, initiate as peg-like structures from the peripheral zone of the shoot apical meristem, which requires class I KNOTTED-LIKE HOMEOBOXI (KNOXI) transcription factors to maintain its activity. The MYB domain protein encoded by the ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) gene, together with other factors, excludes KNOXI gene expression from incipient leaf...
متن کاملPHANTASTICA in compound leaf regulation in legume
Plant leaves, simple or compound, initiate as peg-like structures from the peripheral zone of the shoot apical meristem (SAM), which requires KNOXI homeobox transcription factors to maintain its activity. The MYB domain protein encoded by the ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) gene, together with other factors, excludes KNOXI gene expression from incipient leaf primordia (P0) to...
متن کاملEnvironmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1.
The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017